\(\int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx\) [41]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 48 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\frac {\cos (e+f x) (a+a \sin (e+f x))^{9/2}}{10 a c f (c-c \sin (e+f x))^{11/2}} \]

[Out]

1/10*cos(f*x+e)*(a+a*sin(f*x+e))^(9/2)/a/c/f/(c-c*sin(f*x+e))^(11/2)

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {2920, 2821} \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\frac {\cos (e+f x) (a \sin (e+f x)+a)^{9/2}}{10 a c f (c-c \sin (e+f x))^{11/2}} \]

[In]

Int[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(7/2))/(c - c*Sin[e + f*x])^(13/2),x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(9/2))/(10*a*c*f*(c - c*Sin[e + f*x])^(11/2))

Rule 2821

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -2^(-1)]

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {(a+a \sin (e+f x))^{9/2}}{(c-c \sin (e+f x))^{11/2}} \, dx}{a c} \\ & = \frac {\cos (e+f x) (a+a \sin (e+f x))^{9/2}}{10 a c f (c-c \sin (e+f x))^{11/2}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(412\) vs. \(2(48)=96\).

Time = 12.34 (sec) , antiderivative size = 412, normalized size of antiderivative = 8.58 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\frac {16 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 (a (1+\sin (e+f x)))^{7/2}}{5 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{13/2}}-\frac {8 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5 (a (1+\sin (e+f x)))^{7/2}}{f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{13/2}}+\frac {8 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (a (1+\sin (e+f x)))^{7/2}}{f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{13/2}}-\frac {4 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^9 (a (1+\sin (e+f x)))^{7/2}}{f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{13/2}}+\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^{11} (a (1+\sin (e+f x)))^{7/2}}{f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 (c-c \sin (e+f x))^{13/2}} \]

[In]

Integrate[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(7/2))/(c - c*Sin[e + f*x])^(13/2),x]

[Out]

(16*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*(a*(1 + Sin[e + f*x]))^(7/2))/(5*f*(Cos[(e + f*x)/2] + Sin[(e + f*
x)/2])^7*(c - c*Sin[e + f*x])^(13/2)) - (8*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^5*(a*(1 + Sin[e + f*x]))^(7/2
))/(f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(13/2)) + (8*(Cos[(e + f*x)/2] - Sin[(e + f
*x)/2])^7*(a*(1 + Sin[e + f*x]))^(7/2))/(f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(13/2)
) - (4*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^9*(a*(1 + Sin[e + f*x]))^(7/2))/(f*(Cos[(e + f*x)/2] + Sin[(e + f
*x)/2])^7*(c - c*Sin[e + f*x])^(13/2)) + ((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^11*(a*(1 + Sin[e + f*x]))^(7/2
))/(f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^7*(c - c*Sin[e + f*x])^(13/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(108\) vs. \(2(42)=84\).

Time = 0.28 (sec) , antiderivative size = 109, normalized size of antiderivative = 2.27

method result size
default \(\frac {\sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \left (\cos ^{4}\left (f x +e \right )-12 \left (\cos ^{2}\left (f x +e \right )\right )+16\right ) a^{3} \tan \left (f x +e \right )}{5 f \left (\cos ^{4}\left (f x +e \right )+4 \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-8 \left (\cos ^{2}\left (f x +e \right )\right )-8 \sin \left (f x +e \right )+8\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, c^{6}}\) \(109\)

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(13/2),x,method=_RETURNVERBOSE)

[Out]

1/5/f*(a*(1+sin(f*x+e)))^(1/2)*(cos(f*x+e)^4-12*cos(f*x+e)^2+16)*a^3/(cos(f*x+e)^4+4*cos(f*x+e)^2*sin(f*x+e)-8
*cos(f*x+e)^2-8*sin(f*x+e)+8)/(-c*(sin(f*x+e)-1))^(1/2)/c^6*tan(f*x+e)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 150 vs. \(2 (42) = 84\).

Time = 0.33 (sec) , antiderivative size = 150, normalized size of antiderivative = 3.12 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\frac {{\left (5 \, a^{3} \cos \left (f x + e\right )^{4} - 20 \, a^{3} \cos \left (f x + e\right )^{2} + 16 \, a^{3}\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{5 \, {\left (5 \, c^{7} f \cos \left (f x + e\right )^{5} - 20 \, c^{7} f \cos \left (f x + e\right )^{3} + 16 \, c^{7} f \cos \left (f x + e\right ) - {\left (c^{7} f \cos \left (f x + e\right )^{5} - 12 \, c^{7} f \cos \left (f x + e\right )^{3} + 16 \, c^{7} f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(13/2),x, algorithm="fricas")

[Out]

1/5*(5*a^3*cos(f*x + e)^4 - 20*a^3*cos(f*x + e)^2 + 16*a^3)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)
/(5*c^7*f*cos(f*x + e)^5 - 20*c^7*f*cos(f*x + e)^3 + 16*c^7*f*cos(f*x + e) - (c^7*f*cos(f*x + e)^5 - 12*c^7*f*
cos(f*x + e)^3 + 16*c^7*f*cos(f*x + e))*sin(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(7/2)/(c-c*sin(f*x+e))**(13/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {7}{2}} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {13}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(13/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(7/2)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(13/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 201 vs. \(2 (42) = 84\).

Time = 0.33 (sec) , antiderivative size = 201, normalized size of antiderivative = 4.19 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=-\frac {{\left (5 \, a^{3} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{8} - 10 \, a^{3} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} + 10 \, a^{3} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 5 \, a^{3} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a^{3} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \sqrt {a}}{10 \, c^{7} f \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{10}} \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(13/2),x, algorithm="giac")

[Out]

-1/10*(5*a^3*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^8 - 10*a^3*sqrt(c)*sgn
(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^6 + 10*a^3*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x +
 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^4 - 5*a^3*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/
2*f*x + 1/2*e)^2 + a^3*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*sqrt(a)/(c^7*f*sgn(sin(-1/4*pi + 1/2*f*x +
 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^10)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{13/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{7/2}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{13/2}} \,d x \]

[In]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(7/2))/(c - c*sin(e + f*x))^(13/2),x)

[Out]

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(7/2))/(c - c*sin(e + f*x))^(13/2), x)